References
Bartzsch, N., M. Brandi, R. de Pastor, L. Devigne, G. Maddaloni, D. P. Restrepo, and G. Sene (2023). Forecasting banknote circulation during the covid-19 pandemic using structural time series models. Deutsche Bundesbank, Discussion Paper (20).
Bojer, C. S., & Meldgaard, J. P. (2021). Kaggle forecasting competitions: An overlooked learning opportunity. International Journal of Forecasting.
Crone, S. F. (2008). NN5 competition. Retrieved from http://www.neural-forecasting-competition.com/NN5/
Godahewa, R., Bergmeir, C., Webb, G. I., Hyndman, R. J., & Montero-Manso, P. (2021). Monash Time Series Forecasting Archive. Neural Information Processing Systems Track 2021.
Hewamalage, H., Bergmeir, C., & Bandara, K. (2021). Recurrent Neural Networks for Time Series Forecasting: Current status and future directions. International Journal of Forecasting.
Hyndman, R. J. (2021). Forecasting: principles and practice. OTexts: Melbourne, Australia.
Januschowski, T., Wang, Y., Torkkola, K., Erkkilä, T., Hasson, H., & Gasthaus, J. (2022). Forecasting with trees. International Journal of Forecasting.
Makridakis, S., & Hibon, M. (2000). The M3-Competition: results, conclusions and implications. International Journal of Forecasting.
Makridakis, S., Spiliotis, E., & Assimakopoulos, V. (2020). The M5 Accuracy competition: Results, findings and conclusions. International Journal of Forecasting.
Miller, C. (2017). Addressing the limitations of forecasting banknote demand. International Cash Conference 2017. Deutsche Bundesbank.
Petropoulos, F., Makridakis, S., Assimakopoulos, V., & Nikolopoulos, K. (2014). ‘Horses for Courses’ in demand forecasting. European Journal of Operational Research (European Journal of Operational Research).
Salinas, D., Flunkert, V., Gasthaus, J., & Januschowski, T. (2020). DeepAR: Probabilistic forecasting with autoregressive recurrent networks. International Journal of Forecasting.
Schaer, O., Svetunkov, I., Yusupova, A., & Fildes, R. (2022). Survey: Forecasting software trends in a challenging world. Institute for Operations Research.
Smyl, S. (2020). A hybrid method of exponential smoothing and recurrent neural networks for time series forecasting. International Journal of Forecasting.
Sonnleitner, B., J. Stapf & K. Wulff (2024), Benchmarking short term forecasts of regional banknote lodgements and withdrawals. Deutsche Bundesbank, Discussion Paper (39).