References
Alonso-Robisco, A., Carbó, J. M., & Marqués, J. M. (2023). Machine Learning methods in climate finance: a systematic review. Documentos de Trabajo/Banco de España, 2310.
Athey, S. (2018). The impact of machine learning on economics. The economics of artificial intelligence: An agenda, 507-547.
Athey, S., & Imbens, G. (2019). Machine learning methods economists should know about. arXiv preprint arXiv:1903.10075.
Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation. Journal of machine Learning research, 3(Jan), 993-1022.
Capelle‐Blancard, G., & Monjon, S. (2012). Trends in the literature on socially responsible investment: Looking for the keys under the lamppost. Business ethics: a European review, 21(3), 239-250.
Castle, J. L., & Hendry, D. F. (2022). Econometrics for modelling climate change. In Oxford Research Encyclopedia of Economics and Finance.
Debrah, C., Darko, A., & Chan, A. P. C. (2022). A bibliometric-qualitative literature review of green finance gap and future research directions. Climate and Development, 1-24.
Diaz-Rainey, I., Robertson, B., & Wilson, C. (2017). Stranded research? Leading finance journals are silent on climate change. Climatic Change, 143(1), 243-260.
Giglio, S., Kelly, B., & Stroebel, J. (2021). Climate finance. Annual Review of Financial Economics, 13, 15-36.
Hershcovich, D., Webersinke, N., Kraus, M., Bingler, J. A. Leippold, M., (2021). Towards Climate Awareness in NLP Research. arXiv:2205.05071.
Kumar, S., Sharma, D., Rao, S., Lim, W. M., & Mangla, S. K. (2022). Past, present, and future of sustainable finance: insights from big data analytics through machine learning of scholarly research. Annals of Operations Research, 1-44.
Liang, H., & Renneboog, L. (2021). Corporate Social Responsibility and Sustainable Finance. In Oxford Research Encyclopedia of Economics and Finance.
López de Prado, M. (2019). Beyond econometrics: A roadmap towards financial machine learning. Available at SSRN 3365282.
Lundberg, S. M., & Lee, S. I. (2017). A unified approach to interpreting model predictions. Advances in neural information processing systems, 30.
Monteleoni, C., Schmidt, G. A., Saroha, S., & Asplund, E. (2011). Tracking climate models. Statistical Analysis and Data Mining: The ASA Data Science Journal, 4(4), 372-392.
Strubell, E., Ganesh, A., & McCallum, A. (2019). Energy and policy considerations for deep learning in NLP. arXiv preprint arXiv:1906.02243.
Sievert, C., & Shirley, K. (2014, June). LDAvis: A method for visualizing and interpreting topics. In Proceedings of the workshop on interactive language learning, visualization, and interfaces (pp. 63-70).
Talan, G., & Sharma, G. D. (2019). Doing well by doing good: A systematic review and research agenda for sustainable investment. Sustainability, 11(2), 353.
Varian, H. R. (2014). Big data: New tricks for econometrics. Journal of Economic Perspectives, 28(2), 3-28.
Zhang, D., Zhang, Z., & Managi, S. (2019). A bibliometric analysis on green finance: Current status, development, and future directions. Finance Research Letters, 29, 425-430.