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Introduction
Inflation differentials

▶ Euro area monetary policy is conducted
uniformly for 20 member countries.

▶ How does the ECB react to deflationary and
inflationary pressure in member states?

▶ Particularly relevant if countries deviate
structurally from the euro area average
inflation rate.

Figure. Source: ECB Website
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Introduction
Inflation Development in the Euro Area

▶ EMU-members structurally differ in the volatility of their inflation rates.
• Austria, Germany, the Netherlands→ Low Volatility
• Greece, Ireland, Italy, Portugal, and Spain→ High Volatility

Average Deviation: Times of High Inflation Average Deviation: Times of Low Inflation
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Figure. Average Inflation Deviations.
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Introduction
Calculating the bias?

Whose inflation rates matter most for the ECB’s monetary policy?

Table. EMU Taylor Rule

Dependent variable:

Interest Rate

(1) (2) (3) (4) (5)

HICP -2% 2.04∗∗∗ 2.24∗∗∗ 2.52∗∗∗ 2.44∗∗∗ 1.86∗∗∗

(0.12) (0.14) (0.19) (0.26) (0.32)
Constant −0.21 −0.17 −0.12 −0.20 −0.41∗

(0.16) (0.17) (0.19) (0.22) (0.24)

Weight on LV countries (ω) = 0 0.2 0.5 0.8 1
Observations 240 240 240 240 240
R2 0.56 0.53 0.43 0.26 0.12

Note: HICP is calculated as follows: HICP := ω × CPILV + (1 − ω) × CPIHV .

→Which weight accurately describes historical EMU monetary policy?
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Introduction
Paper overview

Our "data-driven" solution:
1. Build a two-country New Keynesian model (NKM) of a monetary union with different central

bank regimes.
2. Simulate NKM to generate a data for different policy regime.
3. Train machine learning models (ML) in classifying each regimes.
4. Use the trained ML to classify historical EMU data.

Results:
1. Distribution of the ECB’s historical inflation weight is biased.
2. ECB react more strongly to countries whose inflation rates exhibit larger deviations from their

long-term trend.
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Combining DSGE andMachine Learning

▶ Simple currency union with 2 countries (HV and LV) with each a household and a firm sector
▶ Monetary Policy Targeting Rule:

it = ρ + ϕπ
(
ωππ

C,HV
t + (1 − ωπ) πC,LV

t

)
1. central bank reacts to the union-wide inflation rate: ωπ ≈ 0.5
2. central bank reacts more strongly to country HV: ωπ = 0.8
3. central bank reacts more strongly to country LV: ωπ = 0.2

▶ Calibrate country LV (HV) to represent the LV (HV) EMU-members1

▶ Simulate 3 × 10.000 periods of macro variables (C,L, π, ...)→ Split train/test set: 80/20
▶ Train/Evaluate ML models on the simulated data (neural network outperforms the other

models).
▶ Use neural network to predict ω on historical EMU data.
→ML evaluation →Model fit

1Breuss and Rabitsch (2008) for AT, Albonico et al. (2019) for DE, and Garcia et al. (2021) for NL; Papageorgiou (2014) (EL), Garcia et al. (2021) (IE), Albonico et al. (2019) (ES, IT), and Almeida
(2009) (PT)
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Results
Monetary Policy Regime Classifications
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1. Biased weight: disproportional emphasis (80%) on HV inflation rates
2. ECB is reacting more strongly to greater deviations of inflation rates from their long-term trend
→ potential explanation for 1.
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Results
On the ECB’s Taylor Rule and Loss Function

Standard central bank loss function:

Lt = −
1
2

(
πEMU

t

)2
where πEMU

t is the EMU-wide inflation rate. The corresponding Taylor rule is given by:

it = ρ + ϕππ
EMU
t .
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Results
On the ECB’s Taylor Rule and Loss Function

If ECB’s losses arise from individual deviations rather than from aggregated ones:

Lt = −
1
2

K∑
k=1

ωk
(
πk

t

)2
The interest rate rule becomes:

it = ρ + ϕπ

 K∑
k=1

Ωk
t π

k
t


Ωk

t = ω
k − ν

(
|πEMU

t | − |πk
t |
)

Example:
▶ HV inflation deviation is greater than LV’s (|πHV

t | > |π
EMU
t |)

▶ HV weight in the Taylor Rule exceeds the "true" HV weight: ΩHV
t > ω

HV .
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Results
RegressionModel

▶ Problem: We require weights in continuous
space

▶ Adjustments:
1. NKM: redefine the inflation weight:
Ωπ ∈ [0.1, 0.9]

2. Simulate the NKM in 0.1 Ωπ increments
3. Regression NN

▶ Repeat Training and evaluation of NN
▶ (As expected:) biased weight (0.67) favors

the high-volatility countries.

0
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0.2 0.4 0.6 0.8
Inflation weight (ωπ)

 

Figure. Density Inflation Weight Prediction.
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Results
RegressionModel

▶ Test our hypothesis (greater weight on greater deviation) empirically.
▶ OLS regression:

ΩH
t = β0 + β1(|πEMU

t | − |πL
t |) + ϵt

▶ β0 can be interpreted as the true weight on HV countries ωH

▶ β1 can be interpreted as ν (reaction parameter on deviations from EMU inflation)
▶ Expectation: β0 ≈ 0.5 and β1 > 0

(
|πL| ↑ → (.) ↓ → Ω ↓

)
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Results
RegressionModel

Table. Main Regression Results.

Dependent variable:

Inflation weight := Ωt

(1) (2) (3) (4) (5)

HICP ( = ν) 25.09∗∗∗ 24.06∗∗

(9.41) (9.56)

Y 3.23∗∗ 3.59∗∗

(1.36) (1.44)

C −1.83 −2.90
(2.60) (2.73)

L 8.95 7.44
(6.51) (6.29)

Constant (= ωk) 0.62∗∗∗ 0.62∗∗∗ 0.64∗∗∗ 0.63∗∗∗ 0.62∗∗∗

(0.02) (0.02) (0.02) (0.02) (0.02)

Observations 70 70 70 70 70
R2 0.09 0.08 0.01 0.03 0.21
Adjusted R2 0.08 0.06 −0.01 0.01 0.16
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Conclusion

▶ We investigate whose inflation rates matter most for ECB’s monetary policy.
▶ Theoretical model with different monetary policy rules as data-generating process
▶ Train machine learning model to separate rules
▶ Use machine learning model to classify historical EMU data between 2004 and 2021.
▶ Findings:

1. Disproportional emphasis on high volatility countries
2. Stronger reaction to countries whose inflation rates exhibit larger deviations from their

long-term trend

Stempel, Zahner (2023) Whose Inflation RatesMatterMost? 16 / 16



Robustness Tests

1. Model Extension: Investment and Capital
2. Adjustment of Taylor Parameter
3. Inclusion of ECB Board Composition
4. Use of Inflation Expectations

→ No change in findings.

Current work:
▶ More comprehensive framework: Smets-Wouters-Model (2007, AER).
▶ NKM estimation
▶ ...
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Literature

▶ ML in monetary policy (Tiffin, 2019; Hinterlang, 2020; Hinterlang and Hollmayr, 2021;
Paranhos, 2021; Doerr et al., 2021; Fouliard et al., 2021)

▶ Assessment of inflation differentials within New Keynesian models (Canzoneri et al., 2006;
Angeloni and Ehrmann, 2007; Andres et al., 2008; Duarte and Wolman, 2008; Rabanal, 2009;
Neyer and Stempel, 2022)
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Pagan frontier

Figure. The Pagan frontier

→ we propose a modification to the Pagan frontier by combining DSGE and machine learning
models to study inflation dynamics in the EMU.

→ back
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Calibration

Description Value

Households
H L

Ψk Habit parameter 0.77 0.71
φk Inverse Frisch elasticity 2.01 2.73
ηk

Z Preference shock strength 1 0.45
γk Weight of domestic goods 0.75 0.75
ϑk

C Elasticity of substitution 1.42 1.50
between domestic and foreign goods

ϵ Price elasticity of demand 6 6
β Discount rate 0.995 0.995

Firms
H L

αk Output elasticity labor 0.33 0.33
ηk

A Cost-push shock strength 1 0.45
λk Calvo parameter 0.737 0.852

Central Bank
ϕπ Taylor rule coefficient 1.5; 2.5

ωπ HICP inflation weight
CH

SS
CH

SS+CL
SS

; [0.1, 0.9]

→ back
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Historical EMU Data

▶ Data: Quarterly consumption, employment, output and price level→ consumption weighted
▶ EMU wide interest rate→MRO +Wu and Xia (2020) shadow rate
▶ NKM reports percentage deviations from steady state→ Hamilton (2018) filter to extract the

cyclical component

→ Classification of historical inflation weight on a quarterly basis between 2004Q4 and 2022Q1.

→ Time Series → back
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▶ We compare the performance of several
algorithms in a horserace-style assessment

▶ All models have the following structure
where y ∈ (ωH, ωL, ωC) and X ∈ (Y ,C, π, ...):

yt = hβ(Xt) + ϵt

▶ Accuracy of models is assessed
out-of-sample.

▶ The NN outperforms the other models by
quite a margin.
→ Confusion Matrix → NNs in a nutshell

▶ Next: Use NN on historical EMU data
→ EMU Data

Table. Out-of-sample evaluation.

Accuracy

Uninformed guess 0.33
MLR 0.34
Ridge regression 0.33
Lasso regression 0.33
Elastic net 0.33
K-nearest-neighbor 0.38
Decision tree 0.48
Complex tree 0.48
Prune tree 0.48
Prune complex tree 0.48
Random forest 0.67
Neural network 0.97
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EMU time series

Output Interest Rates

Consumption Employment Price Level
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Figure. Hamilton-Filtered Data.
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Model fit

Table. Comparison of Simulated Moments with Data.

Variable Description ωπ =
CH

SS
CH

SS+CL
SS
ωπ = 0.8 ωπ = 0.2 Data

CH
SS/C

L
SS Relative consumption per capita H, L 0.962 0.962 0.962 0.805

YH,SS/YL,SS Relative GDP per capita H, L 0.980 0.980 0.980 0.773
σ
(
ŷL,t
)
/σ
(
ŷH,t
)

Relative volatility GDP L, H 0.779 0.773 0.783 0.587
σ (ŷt) /σ

(
ŷH,t
)

Relative volatility union-wide GDP, H 0.857 0.888 0.862 0.671
σ (ŷt) /σ

(
ŷL,t
)

Relative volatility union-wide GDP, L 1.010 1.149 1.010 1.144
σ
(
ĉL

t

)
/σ
(
ĉH

t

)
Relative volatility consumption L, H 0.152 0.149 0.158 0.559

σ
(
n̂L

t

)
/σ
(
n̂H

t

)
Relative volatility labor L, H 0.779 0.773 0.783 0.718

σ
(
π̂C,L

t

)
/σ
(
π̂C,H

t

)
Relative volatility inflation L, H 0.913 0.921 0.904 0.842

ρ
(
ŷL,t, ŷH,t

)
Correlation GDP L, H 0.859 0.844 0.871 0.591

ρ
(
π̂C,L

t , π̂
C,H
t

)
Correlation inflation L, H 0.931 0.990 0.991 0.989

ρ
(
ĉL

t , ĉ
H
t

)
Correlation consumption L, H 0.603 0.536 0.640 0.636

ρ
(
n̂L

t , n̂
H
t

)
Correlation labor L, H 0.859 0.844 0.871 0.132

ρ
(
n̂H

t , ĉ
H
t

)
Correlation labor, consumption H 0.943 0.942 0.944 0.627

ρ
(
n̂L

t , ĉ
L
t

)
Correlation labor, consumption L 0.482 0.437 0.513 0.466

Note: x̂t denotes the deviation of a variable X from its zero inflation steady state.
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Neural networks in a nutshell II

▶ A neural network consists of i ∈ I layers, with each k perceptrons.
▶ The input for to layer:

Xi = f (Wi × Xi−1 + bi)

▶ Two activation functions f (·) in this paper::

f (x) = max(0, x) ReLu

f (x) =
exk∑K

k=1 exk
Softmax

▶ Training process: optimize Wi and bi

→ back
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RegressionModel III

Figure. Inflation Weight from Regression NN 2004Q4 - 2022Q1.
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→ Stronger deviations L coincide with periods of higher (L) weight, e.g. 2011, 2017/18 and vice
versa.
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Neural networks in a nutshell
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πL

πH

CL

iEMU

ωH

ωL

ωC

Input
layer
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2. Hidden
layer

Output
layer

Figure. Illustration of a Neural Network.

Notes: This figure illustrates the model architecture of a feed-forward NN with four layers: One input layer,
two hidden layers, and an output layer. The connections between the layers represent the weighting matrix
Wi and are adjusted during the training process.
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Neural networks in a nutshell

...

πL
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Figure. Illustration of a Logistic Regression.

Notes: This figure illustrates the model architecture of a feed-forward NN with four layers: One input layer,
two hidden layers, and an output layer. The connections between the layers represent the weighting matrix
Wi and are adjusted during the training process.
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Neural networks in a nutshell

...

πL

πH

CL

iEMU

ωH

ωL

ωC

Input
layer

Output
layer

Figure. Illustration of a Multinomial Logistic Regression.

Notes: This figure illustrates the model architecture of a feed-forward NN with four layers: One input layer,
two hidden layers, and an output layer. The connections between the layers represent the weighting matrix
Wi and are adjusted during the training process.
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Evaluation II

Table. Confusion matrix of out-of-sample prediction by NN

True label

Neutral LV HV
Neutral 2405 50 39

Prediction LV 48 2442 9
HV 47 7 2452

→ neural network does not suffer from biased predictions
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