Central Bank Capital and Shareholder Relationship

OeNB / SUERF Annual Economic Conference June 10-11, 2024

Matteo Bonetti; Dirk Broeders*; Damiaan Chen; Daniel Dimitrov

*European Central Bank and Maastricht University **The views expressed are those of the authors and do not necessarily reflect those of the European Central Bank or the Eurosystem

Unveiling central banks' financial fortitude

Figure 1: Source: www.centralbanking.com

Motivation

- In the evolving monetary policy, central banks now take on **more financial risk** through asset purchase programs
- Central bank capital serves as a tool in absorbing risks, raising the question of **optimal capital levels** relative to risk taking
- Some argue capital is irrelevant, while others stress its importance for **credible**, **independent** and **effective** policy implementation

What **equilibrium capital policies** follow from rational decision making, factoring in the bargaining position of a central bank and its shareholder?

- We study capital policy as a **financial contract** between the central bank and its shareholder
- This arrangement involves two mutual obligations:
 - The central bank distributes **dividends** to the shareholder during times of strong capitalization
 - The shareholder commits to **recapitalizing** the bank if asset values are substantially lower than the liabilities
- The central bank and the shareholder **bargain** on the parameters of the dividend and recapitalisation policies

- First, we introduce an **economic definition** of central bank equity including the values of the dividend and recapitalization options
- Second, we formalize the **negotiation** wherein parties establish the dividend and recapitalization terms via sequential game theory
- Third, we explore the **risk-shifting implications** of the capital policy via monetary policy that run through these options

Model

- A static, one-period model in the spirit of Merton (1974)
- Information is generated through the standard filtration $\{\mathcal{F}_t, \mathbf{P}, \Omega\}$
- Markets are complete and frictionless
- Any effect of monetary policy is priced in (partial equilibrium)
- After agreeing on capital policy at t, all uncertainty resolves at T
- There is no discretionary balance sheet expansion or contraction
- The shareholder can always deliver on any promised recapitalization*

*Recapitalization could include a bond-for-equity stake swap or a deferred asset

Assets (A_t)	Liabilities (L_t)		
Lending operations	M_t	Banknotes	Ν
Asset purchase program	P_t	Reserves	R_t
		Capital	B_t

Assets:

- *M_t* : Lending operations grow at rate *r*
- P_t : Risky assets from an asset purchase program with risk σ
- ω : Share of risky assets, or P_t into A_t

Liabilities:

- N : Banknotes are fixed
- R_t : Reserves growth at rate r
- $B_t = A_t L_t$: Accounting capital

Central bank equity (step 1)

Contingent dividend and recapitalization policies

- The value of equity is driven by capital and the capital policy
- The central bank pays a **dividend** to the shareholder if assets exceed liabilities by a factor κ_C > 1 at t = T
- Size of the dividend (short call option):

$$C_T = \max\{0, A_T - \kappa_C L_T\}$$
(1)

- The shareholder recapitalizes the central bank if assets fall below liabilities by a factor κ_Π < 1 at t = T
- Size of the recapitalization amount (long gap put option):

$$\Pi_T = \max\{0, L_T - A_T\}$$
⁽²⁾

In case of a recapitalisation, the capital position is fully resolved

Contingent dividend and recapitalization policies

- The value of equity is driven by capital and the capital policy
- The central bank pays a **dividend** to the shareholder if assets exceed liabilities by a factor κ_C > 1 at t = T
- Size of the dividend (short call option):

$$C_T = \max\{0, A_T - \kappa_C L_T\}$$
(1)

- The shareholder recapitalizes the central bank if assets fall below liabilities by a factor κ_Π < 1 at t = T
- Size of the recapitalization amount (long gap put option):

$$\Pi_T = \max\{0, L_T - A_T\}$$
⁽²⁾

• In case of a recapitalisation, the capital position is fully resolved

Both policies determine the central bank's equity at maturity

Figure 2: Central bank equity pay-off at maturity

Table 1: Central bank's balance sheet including the implicit options

Assets		Liabilities	
Lending operations	M_t	Banknotes	Ν
Asset purchase program	P_t	Reserves	R_t
Recapitalization option	Π_t	Dividend option	C_t
		Equity	E_t

 \implies The value of the central bank's **equity** is given by:

$$E_t = A_t - L_t + \Pi_t - C_t \tag{3}$$

Both options be valued through the Black-Scholes-Merton relation

Capital policy smooths the value of equity vs capital

Figure 3: Equity value as a function of asset value Calibration

 \implies The dynamics of **equity** value as a function of assets (blue line) versus accounting **capital** (red dashed line) are remarkably different

Negotiating process (step 2)

- The central bank and the shareholder are risk neutral
- They determine *ex ante* the **capital policy** defined by κ_C and κ_{Π}
- Equilibrium is defined as a mutually beneficial arrangement that discourages deviation for either party

Relevant constraints in the bargaining process

• The central bank needs sufficient funding ex ante to be credible

 $E_t \geq \eta L_t$

• The central bank needs sufficient funding ex post to be credible

 $\kappa_{\Pi} \ge \eta + 1$

• The shareholder participates only if the NPV is sufficiently positive

$$C_t - \Pi_t \ge \theta L_t$$

Dividend is only paid if assets exceed liabilities

$$\kappa_C \geq 1$$

• Recapitalization is only done if assets fall short of liabilities

$$\kappa_{\Pi} \leq 1$$

- We assume that the distress boundary or tipping point η below which the central bank is **no longer credible** is known
- In practice this point is influenced by the bank's **perceived ability** in maintaining economic stability, policy consistency and independence

The constraints lead to a feasible region of policy combinations

Figure 4: Constraints and feasible combinations of policy parameters

15

Sequential game:

- Each party is given authority over only one parameter
- The first player leads by making the initial move, assuming that the second player will observe and respond **strategically**
- Backward induction is applied to solve the game

➡ Details

Table 2: Sequential Equilibrium Combinations

First mover	Central bank (CB)		Shareholder (SH)	
Who sets which policy				
- Dividend policy	SH	CB	SH	CB
- Recapitalization policy	CB	SH	CB	SH
Equilibrium impact on thresholds				
- Dividend payment threshold	Lower	Higher	Lower	Higher
- Recapitalization threshold	Higher	Lower	Higher	Higher
Equilibrium Point	(3)	(1)	(3)	(1) to (2)

 \implies Given the similar outcomes it is more important how decision rights are allocated than who moves first

Risk-Shifting Implications (step 3)

- Capital policy distributes risk between central bank and shareholder
- Potential incentives for the central bank once capital policy is set
 - An incentive to increase risk, shifting it towards the shareholder
 - An incentive to reduce risk to limit shareholder dividend potential
- **Relevant metric**: the change in the value of equity for changes in the share of risky assets (known as "vega")

Risk reducing incentive for a well-capitalized central bank

Figure 5: Option and equity value as a function of risk

Values calibrated for accounting capital at 3% of Liabilities; $\kappa_C = 105\%$, $\kappa_{\Pi} = 95\%$

 \implies A well capitalized central bank has an incentive to reduce risk in order to increase its equity value

Risk taking incentive for an under-capitalized central bank

Figure 6: Option and equity value as a function of risk

Values calibrated for accounting capital at -5% of Liabilities; $\kappa_C = 105\%, \kappa_{\Pi} = 95\%$

 \implies Without a proper institutional framework an under-capitalized central bank has an incentive for risk taking and increase its equity value

To sum up...

- The dynamics of a central bank's **accounting capital** versus the economic value of its **equity** are remarkably different
- The equilibrium capital policy depends on how decision rights are allocated between the central bank and shareholder
- The implications of **shifting risk** may result in either an overly aggressive response to policy objectives or excessive caution

Annex

Appendix: Baseline calibration of the model

Variable	Notation	Value
Model horizon (option maturity in years)	Т	1
Banknotes	Ν	25
Reserves	R_t	75
Total assets	A_t	103
Accounting capital	Bt	3
Share invested in the risky asset	ω	50%
Standard deviation of the risky asset's return	σ	20%
Risk-free rate	r	5%
Dividend (call) strike multiple	κc	1.05
Recapitalization (put) strike multiple	κ_{Π}	0.95
Shareholder participation threshold	θ	2.5%
Central bank viability threshold	η	-15%

Table 3: Baseline Model Calibration

Sequential solutions based on allocation of decision rights

Back, Capital Policy

