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Motivation

▶ Economic models to study questions related to aggregate risk and asset pricing,
often require global solution methods to compute equilibria

▶ Computing a functional rational expectations equilibrium amounts to computing a
set of functions, fi , mapping the state of the economy, x, to endogenous
outcomes fi (x):

fi : D ⊂ RNin → R : x︸︷︷︸
state

→ fi (x)︸︷︷︸
endogenous variables

, s.t. : G(x, f1, . . . , fNout) = 0︸ ︷︷ ︸
equilibrium conditions

▶ This can be a computationally demanding task, especially when
▶ the state of the economy is high-dimensional
▶ the equilibrium functions are nonlinear

▶ Both often happens for Overlapping Generations (OLG) models:
▶ the state includes the wealth distribution across age-groups
▶ young households are often constrained
▶ may want to account for portfolio decomposition and volatility of labor income, both

of which have strong lifecycle components
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This talk

▶ Basic solution method developed in Azinovic et al. (2022)

▶ More recent progress on portfolio choice and market clearing neural network
architectures developed in Azinovic and Žemlička (2023)

▶ Other papers on deep learning based solution methods I learned a lot form: Maliar
et al. (2021); Kase et al. (2023); Gu et al. (2023); Kahou et al. (2021); Han et al.
(2022); Valaitis and Villa (2024); Kahou et al. (2022); Fernández-Villaverde et al.
(2023); Barnett et al. (2023); Jungerman (2023); Kahou et al. (2024)
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Deep Equilibrium Nets
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Violations of equilibrium conditions as loss function
Basic idea in Azinovic et al. (2022): write equilibrium conditions as

G(x, f) = 0 ∀x
G : equilibrium conditions: FOC’s, market clearing, Bellman equations, . . .

x : state of the economy

f : equilibrium functions.

Approximate f by neural network Nρ

Nρ(x)≈f(x)

How?

Standard deep learning:

▶ need labeled data, i.e. inputs for which we know the true output: {xi , f (xi )}i
▶ train neural network parameters ρ to minimize the loss function

ℓρ :=
1

Nlabeled data

∑
xi

(f (xi )−Nρ(xi ))
2

Deep equilibrium nets:

▶ use equilibrium conditions directly as loss function

ℓρ :=
1

Npath length

∑
xi on sim. path

(G(xi ,Nρ))
2

▶ no need for labeled data! What are Neural Nets? Why use Neural Nets?
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Training DEQNs

1. Simulate a sequence of states Di
train ← {xi1, xi2, . . . , xiT} from the policy encoded

by the network parameters ρi .

2. Evaluate the errors of the equilibrium conditions on the newly generated set Dtrain.

3. If the error statistics are not low enough:

3.1 update the parameters of the neural network with a gradient descent step (or a
variant):

ρi+1
k = ρik − αlearn

∂ℓDi
train

(ρi )

∂ρik
.

3.2 set new starting states for simulation: xi+1
0 = xiT .

3.3 increase i by one and go back to step 1.

6



Illustrative Model
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Illustrative OLG model with capital and bond
▶ Representative firm produces with

F (zt ,Kt , L) = ztK
α
t L1−α

wt = αztK
α−1
t L1−α

rt = zt(1− α)Kαt Lα

▶ Uncertainty in TFP zt , and depreciation of
capital δt

log(zt+1) = ρz log(zt) + σzϵt

ϵt ∼ N(0, 1)

δt = δ
2

1 + z

▶ Assets
▶ one period bond with price pt in aggregate

supply B
▶ risky capital Kt
▶ borrowing constraints on both assets

bht ≥ 0

kh
t ≥ 0

▶ Households
▶ H = 32 age-groups, indexed with

h ∈ H := {1, . . . , 32}
▶ supply labor units lht inelastically
▶ adjustment costs on capital

∆h
k,t := kh+1

t+1 − kh
t

adj. costs = ψ
(
∆h

k,t

)2

▶ budget constraint

cht = lhwt + bh−1
t−1 + kh−1

t−1 (1− δt + rt)

− pbt b
h
t − kh

t − ψ
(
∆h

k,t

)2

▶ maximize

E

[
H∑
i=h

βi−hu(ch+i
t+i )

]

u(c) :=
c1−γ − 1

1− γ
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Equilibrium conditions
▶ Market clearing:

Kt :=
∑

h∈H

kh
t

B =
∑

h∈H

bht ⇔ ϵBt := B −
∑

h∈H

bht = 0

▶ Firms optimize:

wt := αztK
α−1
t L1−α

rt := zt(1− α)Kα
t L

α

▶ Households optimize:
▶ H sets of Karush Kuhn Tucker conditions for bond
⇒ single equation using the Fisher-Burmeister equation
⇒ H errors ϵk,it

▶ H sets of Karush Kuhn Tucker conditions for capital
⇒ single equation using the Fisher-Burmeister equation
⇒ H errors ϵh,it

details
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Approximation with standard DEQN
▶ State of the economy

xt = [ zt︸︷︷︸
ex. shock

, k1t , . . . , k
32
t︸ ︷︷ ︸

dist. of cap.

, b1t , . . . , b
32
t︸ ︷︷ ︸

dist. of bonds

]

▶ Equilibrium policies

f(xt) = [k1t+1, . . . , k
32
t+1︸ ︷︷ ︸

capital policy

, b1t+1, . . . , b
32
t+1︸ ︷︷ ︸

bond policy

, pbt︸︷︷︸
bond price

]

▶ Neural network approximates

Nρ(xt) = [k̂1t+1, . . . , k̂
32
t+1︸ ︷︷ ︸

capital policy

, b̂1t+1, . . . , b̂
32
t+1︸ ︷︷ ︸

bond policy

, p̂bt︸︷︷︸
bond price

] ≈ f(xt)

▶ Loss function

ℓρ(xt) := whh,k︸ ︷︷ ︸
weight

(
H−1∑

h=1

(
ϵk,ht

)2
)

︸ ︷︷ ︸
opt. cond. cap.

+whh,b︸ ︷︷ ︸
weight

(
H−1∑

h=1

(
ϵb,ht

)2
)

︸ ︷︷ ︸
opt. cond. bond

+wmc,B︸ ︷︷ ︸
weight

(
ϵBt

)2

︸ ︷︷ ︸
market clearing
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Innovation 1: Market clearing layers
▶ Neural network first predicts

N pre
ρ (xt) = [k̂1

t+1, . . . , k̂
32
t+1, b̃

1
t+1, . . . , b̃

32
t+1, p̂

b
t ]

▶ Apply transformation m(. . . , ·)
[b̂1

t+1, . . . , b̂
32
t+1] = m

(
N pre

ρ (xt),B
)

▶ Such that

B =
32∑
h=1

b̂h
t+1

▶ Put together

Nρ(xt) := [k̂1
t+1, . . . , k̂

32
t+1, b̂

1
t+1, . . . , b̂

32
t+1, p̂

b
t ]

▶ Loss function now

ℓρ(xt) := whh,k︸ ︷︷ ︸
weight

(
H−1∑
h=1

(
ϵk,ht

)2)
︸ ︷︷ ︸

opt. cond. cap.

+whh,b︸ ︷︷ ︸
weight

(
H−1∑
h=1

(
ϵb,ht

)2)
︸ ︷︷ ︸

opt. cond. bond

+

���
����*= 0

wmc,B︸ ︷︷ ︸
weight

(
ϵBt

)2
︸ ︷︷ ︸

market clearing

1. no need to learn economics we already know ex-ante
2. remaining loss easier to interpret
3. states simulated from the policy are always consistent with market clearing details
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Innovation 2: Stabilizing step-wise model
transformations

▶ Single asset models are easy

▶ Many asset models are hard
▶ Why?

▶ portfolio choice only pinned down at low errors in equilibrium conditions
▶ but how do we get there?

▶ Step-wise model transformations
1. N − 1 asset models are nested in N asset models
2. start with single asset model

N 1
ρ(xt) = [k̂1

t+1, . . . , k̂
32
t+1, 0×b̂1t+1, . . . , 0×b̂32t+1, p̂

b
t ],B

1 = 0

3. solve the model
4. train the neural network to predict the bond price (supervised, from zero liquidity

limit)
5. slowly introduce the second asset (such that the error remains low)
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Application
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Step 1: Solve single asset model

▶ Borrowing constraint b = 0, net-supply B = 0

▶ Neural network predicts

N pre
ρ (xt) = [k̂1t+1, . . . , k̂

32
t+1, 0×b̃1t+1, . . . , 0×b̃32t+1, p̂

b
t ]

⇒ Nρ(xt) = [k̂1t+1, . . . , k̂
32
t+1, 0, . . . , 0, p̂

b
t ]

▶ Loss function

ℓρ(xt) := 1×
(

H−1∑

h=1

(
ϵk,ht

)2
)

︸ ︷︷ ︸
opt. cond. cap.

+0×
(

H−1∑

h=1

(
ϵb,ht

)2
)

︸ ︷︷ ︸
opt. cond. bond︸ ︷︷ ︸

=0
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Step 2: Pre-train bond price in the capital only model
▶ Keep borrowing constraint b = 0, net-supply B = 0, and neural network masks

Nρ(xt) = [k̂1
t+1, . . . , k̂

32
t+1, 0, . . . , 0, p̂

b
t ]

▶ In equilibrium we know that

pb
t ≥

βE
[
u′(ch+1

t+1 )
]

u′(cht )

with equality for unconstrained agents.

▶ With market clearing policies, we have a closed form expression for the bond price and can define
pre-train price and error

pb,pre-train
t := max

h∈H

{
βE
[
u′(ch+1

t+1 )
]

u′(cht )

}
ϵpre-traint := pb,pre-train

t − p̂b
t

▶ Loss function

ℓρ(xt) := 1×

(
H−1∑
h=1

(
ϵk,ht

)2)
︸ ︷︷ ︸

opt. cond. cap.

+0×

(
H−1∑
h=1

(
ϵb,ht

)2)
︸ ︷︷ ︸

opt. cond. bond︸ ︷︷ ︸
=0

+1×
(
ϵpre-traint

)2
︸ ︷︷ ︸

price pre-train error
train supervised
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Step 3: Slowly increase bond supply

▶ Borrowing constraint b = 0, increase net-supply from B = 0.1 to B = 10

▶ Neural network predicts

N pre
ρ (xt) = [k̂1t+1, . . . , k̂

32
t+1, 0.01×b̃1t+1, . . . , 0.01×b̃32t+1︸ ︷︷ ︸

bond policies active

, p̂bt ]

⇒ Nρ(xt) = [k̂1t+1, . . . , k̂
32
t+1, b̂1t+1, . . . , b̂

32
t+1︸ ︷︷ ︸

always add up the B

, p̂bt ]

▶ Loss function

ℓρ(xt) := 1×
(

H−1∑

h=1

(
ϵk,ht

)2
)

︸ ︷︷ ︸
opt. cond. cap.

+ 1×︸︷︷︸
bond equ. cond. active

(
H−1∑

h=1

(
ϵb,ht

)2
)

︸ ︷︷ ︸
opt. cond. bond
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Step 4: Training with the final supply

▶ Borrowing constraint b = 0, bond at full net-supply from B = 10

▶ Neural network predicts

N pre
ρ (xt) = [k̂1t+1, . . . , k̂

32
t+1, 0.01×b̃1t+1, . . . , 0.01×b̃32t+1︸ ︷︷ ︸

bond policies active

, p̂bt ]

⇒ Nρ(xt) = [k̂1t+1, . . . , k̂
32
t+1, b̂1t+1, . . . , b̂

32
t+1︸ ︷︷ ︸

always add up the B

, p̂bt ]

▶ Loss function contains all remaining equilibrium conditions

ℓρ(xt) := 1×
(

H−1∑

h=1

(
ϵk,ht

)2
)

︸ ︷︷ ︸
opt. cond. cap.

+1×
(

H−1∑

h=1

(
ϵb,ht

)2
)

︸ ︷︷ ︸
opt. cond. bond
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Conclusion
▶ Deep neural networks are promising to approximate nonlinear functions on

high-dimensional domains
▶ Key ideas in Azinovic et al. (2022):

▶ minimizing the error in the equilibrium conditions allows training the neural network
without labeled data ⇒ neural network can be trained on billions of states

▶ training on the simulated path ⇒ focus training on where it matters

▶ Models with many assets remain challenging. To address this issue Azinovic and
Žemlička (2023) introduce key innovations
▶ market clearing layers, an economics-inspired neutral network architecture
▶ step-wise model transformation procedure to guide network training with many assets

▶ Also in the paper: quantitative life-cycle model with disaster risk, housing, equity
and bonds in general equilibrium to study the intergenerational consequences of
rare disasters (updated version coming soon)

▶ Other cool papers on deep learning based solution methods: Maliar et al. (2021);
Kase et al. (2023); Gu et al. (2023); Kahou et al. (2021); Han et al. (2022);
Valaitis and Villa (2024); Kahou et al. (2022); Fernández-Villaverde et al. (2023);
Barnett et al. (2023); Jungerman (2023); Kahou et al. (2024)
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Thank you!

24



References I

Azinovic, M., Gaegauf, L., and Scheidegger, S. (2022). Deep equilibrium nets. International Economic Review,
63(4):1471–1525.
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Kahou, M. E., Fernández-Villaverde, J., Gómez-Cardona, S., Perla, J., and Rosa, J. (2022). Spooky boundaries
at a distance: Exploring transversality and stability with deep learning.

Kahou, M. E., Fernández-Villaverde, J., Perla, J., and Sood, A. (2021). Exploiting symmetry in
high-dimensional dynamic programming. Working Paper 28981, National Bureau of Economic Research.

Kahou, M. E., Yu, J., Perla, J., and Pleiss, G. (2024). How inductive bias in machine learning aligns with
optimality in economic dynamics. arXiv preprint arXiv:2406.01898.



References II

Kase, H., Melosi, L., and Rottner, M. (2023). Estimating nonlinear heterogeneous agents models with neural
networks. CEPR Discussion Paper No. DP17391.

Maliar, L., Maliar, S., and Winant, P. (2021). Deep learning for solving dynamic economic models. Journal of
Monetary Economics, 122:76–101.

Valaitis, V. and Villa, A. (2024). A machine learning projection method for macro-finance models. Forthcoming
in Quantitative Economics.



Deep Neural Networks



What is a deep neural net?

Consider:

input := x→W 1
ρx+ b1ρ =: hidden 1

→ hidden 1→W 2
ρ (hidden 1) + b2ρ =: hidden 2

→ hidden 2→W 3
ρ (hidden 2) + b3ρ =: output

The parameters ρ of this procedure are the entries of the matrices (W 1
ρ , W 2

ρ , W 3
ρ )

and vectors (b1ρ, b2ρ, b3ρ).
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What is a deep neural net? (cont.)

So far we have a concatenation of affine maps and therefore an afffine map.

Next ingredient: activation functions ϕ1, ϕ2, ϕ3. Activation functions could be any
function, but popular are:
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What is a deep neural net? (cont.)

Now we get:

input := x→ ϕ1(W 1
ρx+ b1ρ) =: hidden 1

→ hidden 1→ ϕ2(W 2
ρ (hidden 1) + b2ρ) =: hidden 2

→ hidden 2→ ϕ3(W 3
ρ (hidden 2) + b3ρ) =: output

The neural net is then given by the choice of activation functions and the parameters ρ.
back



Why neural networks?

Approximation method
High-dimensional

input

Can resolve
local features
accurately

Irregularly
shaped
domain

Large amount
of data

Polynomials ✓ ✗ ✓ ✓

Splines ✗ ✓ ✗ ✓

Adaptive (sparse) grids ✓ ✓ ✗ ✓

Gaussian processes ✓ ✓ ✓ ✗

Deep neural networks ✓ ✓ ✓ ✓

Table: Taken from Azinovic et al. (2022).
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Innovation 1: Details on the market clearing
transformation function

▶ Simple market clearing layer: subtract excess demand EDt from initial predictions

EDt :=
∑
h∈H

b̃h
t+1 − B

b̂h
t+1 := b̃h

t+1 −
1

H
EDt

▶ Why this adjustment?

→ we try to minimize the modification to the initial predictions {b̃h
t+1}h∈H.

▶ Final predictions {b̂h
t+1}h∈H solve

argmin
{xht+1}h∈H

∑
h∈H

(
xh
t+1 − b̃h

t+1

)2
subject to∑
h∈H

xh
t+1 = B
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Parameters
Parameters H β γ ψ ρ σ α

Values 32 0.912 4 0.1 0.693 0.052 0.333

Meaning num. age groups patience RRA adj. costs pers. tfp std. innov. tfp cap. share
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Households’ optimality conditions

1 =
βE

[
u′(ch+1

t+1 )(1−δt+1+rt+1+2ψk∆h+1
k,t+1

]
+µh

t

(1+2ψk∆h
k,t

)u′(cht )

kh
t ≥ 0
µht ≥ 0

kh
t µ

h
t = 0

 ⇔ ϵk,ht := ψFB

u′−1
(
βE

[
u′(ch+1

t+1 )
(1−δt+1+rt+1+2ψk∆h+1

k,t+1

(1+2ψk∆h
k,t

)

])
cht

− 1,
kh
t

cht



1 =
βE

[
u′(ch+1

t+1 )
]
+λh

t

pbt u
′(cht )

bht − b ≥ 0
λht ≥ 0

(bht − bh)λht = 0

 ⇔ ϵb,ht := ψFB

u′−1
(
βE

[
1
pbt

u′(ch+1
t+1 )

])
cht

− 1,
bht − b

cht


where

ψFB(a, b) := a+ b −
√

a2 + b2
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