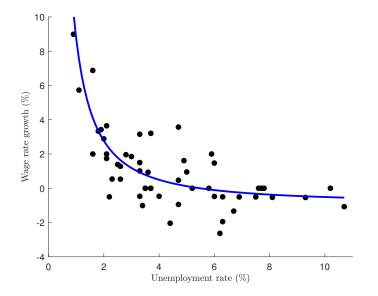
Phillips and Beveridge Curves are Baaack


Pierpaolo Benigno¹ Gauti Eggertsson²

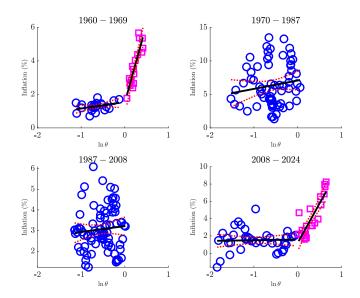
¹University of Bern ²Brown University

November 19, 2024

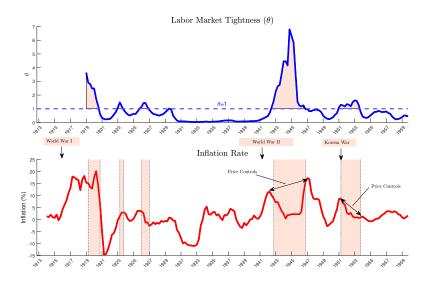
Phillips Curve

Phillips Curve

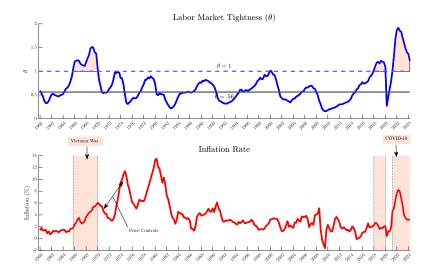
New Keynesian Phillips Curve

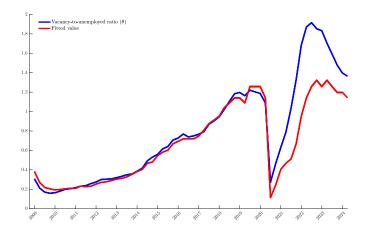

$$\pi_t = \kappa_x x_t + \kappa_\nu \nu_t + k_\pi E_t \pi_{t+1}$$

where:


• $\pi_t = \text{inflation}$

- x_t = measure of economic activity
- \triangleright $\nu_t = \text{supply shocks}$
- $E_t \pi_{t+1} = \text{inflation expectations}$
- $\kappa_{x,\nu,\pi} = \text{coefficients.}$


Phillips Curve Evidence: U.S. 1960-2024


Episodes of Labor Market Tightness in 111 Years of U.S. History

Episodes of Labor Market Tightness in 111 Years of U.S. History

Why $\theta = \frac{v}{u}$ rather than u as a measure of economic slack?

Estimating Phillips Curve

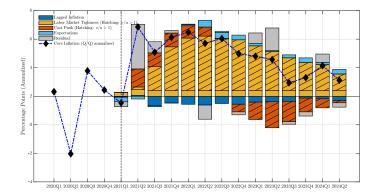
$$\pi_t = \beta_c + \beta_\pi \pi_{t-1} + (\beta_\theta + \beta_{\theta_d} D_t) \ln \theta_t + (\beta_\nu + \beta_{\nu_d} D_t) \nu_t + \beta_{\pi^e} \pi_t^e + \varepsilon_t,$$

where:

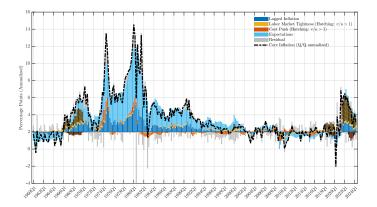
►
$$\beta_c, \beta_\pi, \beta_\theta, \beta_{\theta_d}, \beta_v, \beta_{\upsilon_d}, \beta_{\pi^e}$$
 are parameters

- \triangleright ε_t is a zero-mean normally distributed error term
- D_t is a dummy variable equal to 1 if $\theta_t \ge 1$
- $\pi_t = \ln P_t \ln P_{t-1}$ (inflation), π_{t-1} is the lagged inflation
- ▶ $\ln \theta_t$ is the logarithm of the vacancy-to-unemployment ratio
- \triangleright ν_t is a supply shock, π_t^e is inflation expectations

Phillips Curve Estimates

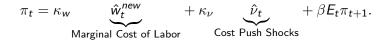

Phillips Curve Estimates

	-			
	(1)	(2)	(3)	(4)
	1960-2024	2008-2024	1960-2024	2008-2024
Inflation lag	0.3707*** (0.0949)	0.2668 (0.2503)	0.2572*** (0.0933)	-0.1377 (0.1951)
$\ln heta$	0.6748 ^{***} (0.1779)	0.7267* (0.3708)	0.2367 (0.1993)	0.5227 (0.3188)
$ heta \geq 1$			$3.7165^{***}_{(0.8248)}$	5.3565 ^{***} (0.8936)
Supply shock $ u$	$\underset{(0.0192)}{0.0377^{**}}$	0.0177 (0.0393)	0.0446 ^{**} (0.0204)	-0.0093 (0.023)
$ heta \geq 1$			0.1015 (0.0993)	0.275 ^{**} (0.1212)
Inflation expectations	$0.6596^{***}_{(0.1064)}$	0.8263 (0.6225)	$0.8072^{***}_{(0.1016)}$	0.5091 (0.5048)
Constant	$0.5559^{***}_{(0.1538)}$	$0.9406^{**}_{(0.4176)}$	0.1977 (0.1662)	0.3954 (0.3822)
R^2 adjusted	0.8139	0.5137	0.8264	0.6603
Observations	258	64	258	64

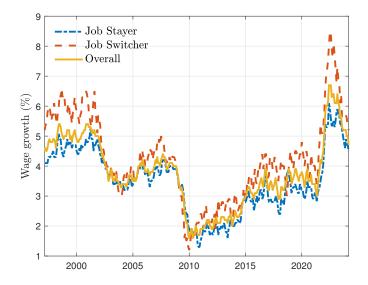

 \cdot *** p < 0.01, ** p < 0.05, * p < 0.1

· Newey-West standard errors

Inflation Decomposition: 2020s Inflationary Surge



Inflation Decomposition:since 1960



Inv-L New Keynesian Phillips Curve

- Standard sticky price model of costly price adjustment, but where existing and new workers are perfect substitutable as labor input.
- Wages of new hires is not lower than wages of existing workers.
- Key novelty: marginal costs of firms depend on wages of new workers.

Wage Dynamic

Wage Behavior

- Wage indeterminacy is addressed by having employment agencies post vacancies and hire workers on behalf of firms.
- Posting vacancies is costly, while hiring workers provides benefits (a fraction of the wage bill).
- Profits are:

$$\gamma_b w_t M_t - \gamma_c V_t = \gamma_b w_t m_t \theta_t^{-\eta} V_t - \gamma_c V_t;$$

Equilibrium implies that flexible wages are:

$$w_t^{\text{flex}} = rac{\gamma_c}{\gamma_b} rac{ heta_t^{\eta}}{m_t}$$

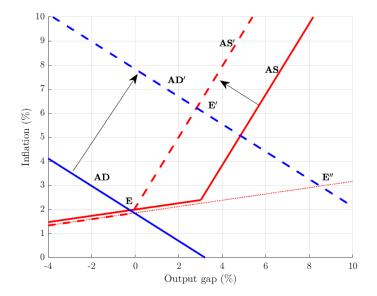
Wage Behavior

► Wages for new hires:

$$w_t^{\mathsf{new}} = \max\{w_t^{\mathsf{ex}}, w_t^{\mathsf{flex}}\}.$$

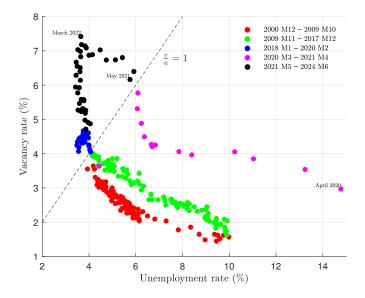
Wages for existing workers:

$$w_t^{\mathsf{ex}} = \left(w_{t-1}^{\mathsf{ex}} \frac{(\mathsf{\Pi}_{t+1}^{\mathsf{e}})^{\delta}}{\mathsf{\Pi}_t} \right)^{\lambda} (w_t^{\mathsf{flex}})^{1-\lambda} \phi_t.$$


Inv-L New Keynesian Phillips Curve

$$\pi_{t} = \begin{cases} c + \kappa^{tight}\hat{\theta}_{t} + \kappa_{\nu}^{tight}\hat{\nu}_{t} + \beta E_{t}\pi_{t+1}, & \text{if } \hat{\theta}_{t} > \hat{\theta}_{t}^{*} \\ \\ \kappa_{w}\hat{w}_{t-1} + \kappa\hat{\theta}_{t} + \kappa_{\nu}\hat{\nu}_{t} + \kappa_{\beta}E_{t}\pi_{t+1}, & \text{if } \hat{\theta}_{t} \le \hat{\theta}_{t}^{*} \end{cases}$$

where:


- $\kappa_{\beta} \gtrless \beta$:
- $\hat{\theta}_t^*$: threshold value of the vacancy-to-unemployment ratio

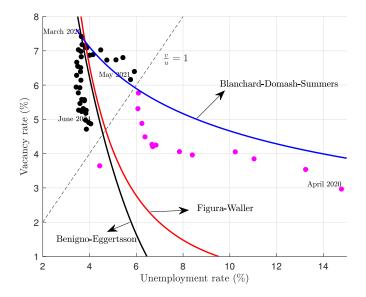
The 2020s Inflationary Surge

Beveridge Curve

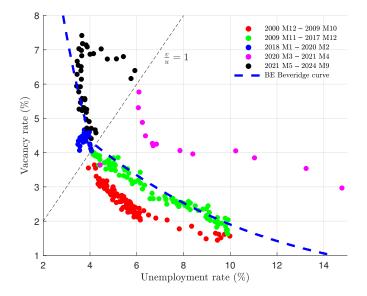
The post-2000 U.S. Beveridge Curve

The BE Beveridge Curve

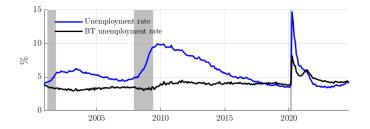
► Novel labor-market search model in which each period an exogenous fraction (1 - s_t) of the labor force (F_t) is attached to firms, leading to:

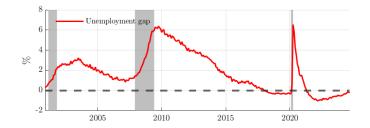

$$s_t F_t = U_t + H_t \Rightarrow s_t = u_t + h_t = u_t + m_t \theta_t^{1-\eta}$$

• The Beveridge Curve follows noting that $\theta_t = v_t/u_t$:

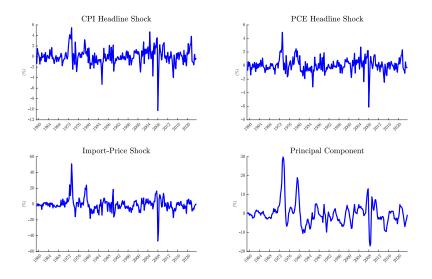

$$v_t = \left(\frac{s_t - u_t}{m_t u_t^{\eta}}\right)^{\frac{1}{1 - \eta}}$$

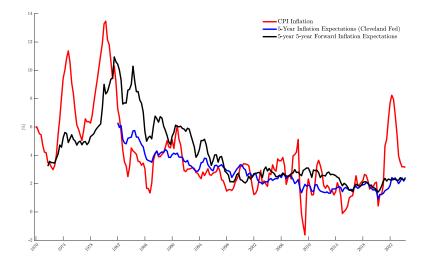
Parameters s_t and m_t can be inferred from data.


Beveridge Curve: Comparison

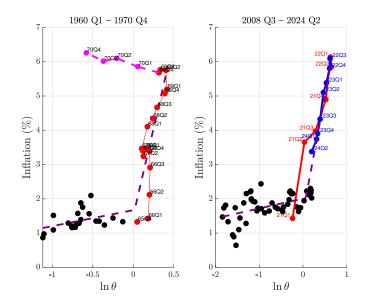


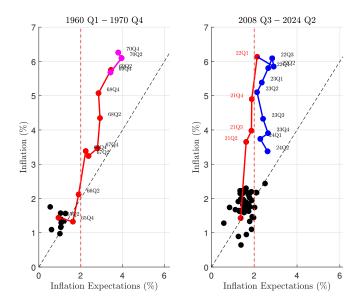
The Generalized BE Beveridge Curve

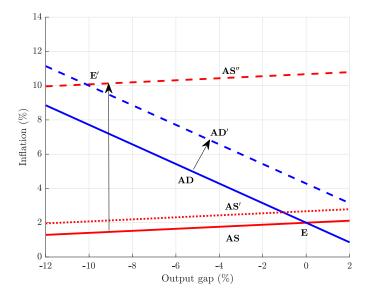

The Beveridge-Threshold Unemployment Rate

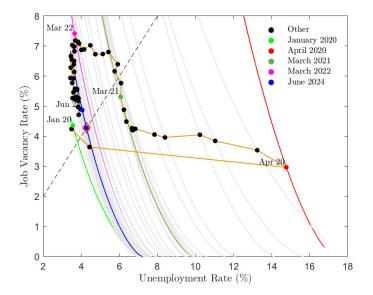


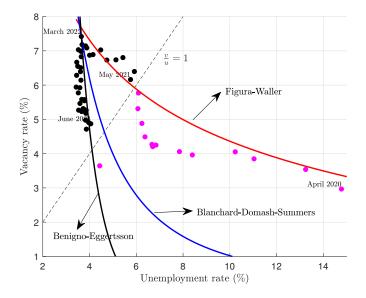
Thank You!


Supply Shocks


Inflation Expectations


1960s versus 2020s Comparison


1960s versus 2020s Comparison


The 1970s Great Inflation

The BE Beveridge Curve

Beveridge Curve: Comparison

Generalized BE Beveridge Curve

- The fraction of unattached workers s_t was considered as exogenous.
- We hypothesize a relationship of the form

► We then obtain a generalized Beveridge Curve:

$$0 = \begin{cases} m_t u_t^{\eta} v_t^{1-\eta} - \bar{s}_t - a_h (u_t^{b_h} v_t^{-b_h} - 1) + u_t & \theta_t \ge 1 \\ \\ m_t u_t^{\eta} v_t^{1-\eta} - \bar{s}_t - a_l (u_t^{b_l} v_t^{-b_l} - 1) + u_t & \theta_t < 1 \end{cases}$$

.