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Introduction 

Over the 1980s and 1990s, less-educated workers in the US saw a decline in their wages relative to those of more educated workers, with 

little indication of a subsequent rebound (Katz & Murphy, 1992; Levy & Murnane, 1992; Heathcote et al., 2023). There are many potential 

explanations for such developments and much empirical effort has been devoted to testing and measuring the contribution of various 

factors, including variations in immigration and trade flows, changes in the relative supply of less- and more-educated workers, changes 

in union density, a falling minimum real wage, and technological change. The strongest evidence has favored technological change 

(Acemoglu, 1998, 2002; Krusell et al., 2000; Duffy et al., 2004) with the advent of new technologies (especially automation) in the 1980s 

and 1990s (1) displacing routine tasks performed by less-educated workers (Autor et al., 2008; Acemoglu & Restrepo, 2018a, 2022; 

Acemoglu et al., 2023a) or (2) exhibiting a high degree of complementarity with education, resulting in a rise in the demand for (and, thus, 

the pay of) the more-educated workers (Bound & Johnson, 1992; Cords and Prettner, 2022).  

 

More recently, Artificial Intelligence (AI) has emerged as a new technology (Agrawal et al., 2019; Acemoglu et al., 2023b; Acemoglu, 2024) 

and some scholars have argued that the AI revolution may lead to even higher levels of earnings inequality (Korinek & Stiglitz, 2019; Grant 

and U ngo r, 2024). However, other analysts have suggested the opposite (Webb, 2019; Autor, 2024). The main argument is that, in contrast 

to industrial robots, AI predominantly performs tasks usually accomplished by high-skill workers. For example, AI-based models and 

devices are increasingly used to diagnose diseases, develop drugs, write and translate texts, code, or simply generate inspiring ideas for 

employees in the creative industry. Since these tasks are often nonroutine and performed by high-skill workers, AI may put downward 

pressure on their wages and thereby also on the skill premium. Autor (2024) even explains how AI can help rebuild the middle class insofar 

as complicated tasks come within the reach of lower-skill individuals who use AI. 
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A new framework to analyze the effects of AI on the skill premium 

To analyze the effects of AI on the skill premium at the macroeconomic level, we propose a general description of the 

aggregate production process in a modern economy that differentiates between low-skill and high-skill workers as 

well as among three types of productive capital: traditional physical capital (such as machines and assembly lines), 

automation capital (such as industrial robots), and AI capital (Bloom et al., 2024). We put particular emphasis on the 

extent to which these capital stocks are substitutes for different types of skills. Traditional physical capital in the form 

of assembly lines and machines needs to be operated by humans so that there is a certain degree of complementarity 

between labor and this type of capital. By contrast, industrial robots are designed to be substitutes predominantly for 

low-skill routine-intensive workers. Finally, AI predominantly substitutes for high-skill non-routine workers as 

described above. Overall, this framework allows us to derive conditions subject to which the deployment of industrial 

robots raises the skill premium, whereas the emergence and increasing use of AI reduces the skill premium.  

 

In our contribution, we investigate the differential effects of industrial robots and AI on the wages of low-skill and high-

skill workers as well as on the skill premium. We do so by relying on parameter values from the literature (Jones, 1995; 

Acemoglu, 2002, 2009; Jurkat et al., 2022; Prettner, 2023) and on data from the U.S. Bureau of Labor Statistics (2020), 

the International Federation of Robotics (2022), and the Federal Reserve Bank of St. Louis (2023). We simulate the 

skill premium (𝑤𝑠/𝑤𝑢) that our production framework implies for varying levels of the AI capital stock (G) in relation 

to the stock of automation capital (P) and show the results in Table 1. 

 

Table 1. Summary of parameter values and initial levels for the simulation 

 

AI stock (G) Skill Premium (𝑤𝑠/𝑤𝑢)  

𝐺 = 0 2.00  

G = 0.5 ∗ P 1.70  

G = P 1.62  

𝐺 = 2 ∗ 𝑃 1.52  

 

We observe that the skill premium without the use of any AI is 2.00 – the average wages of high-skill workers are twice 

the average wages of low-skill workers – and is therefore close to the value observed in the data for the US in the 2000s. 

This is reassuring insofar as our framework predicts the skill premium correctly for reasonable parameter values and 

the empirically observed values of labor and capital inputs of the various types.  

 

Next, we investigate what happens if we increase the stock of AI capital to one-half of the traditional automation capital 

stock (G=0.5*P). We observe that the skill premium decreases to 1.70. Additional reductions occur for further increases 

in the use of AI, although the rate of decreases in the skill premium diminishes. Overall, our simulated production 

framework implies that the deployment and increasing use of AI ceteris paribus puts downward pressure on the gap 

between the wages of high-skill workers and low-skill workers. 

 

To get a broader picture on the evolution of the skill premium when we also allow the stock of automation capital in 

the form of industrial robots to accumulate, we illustrate the ratio of 𝑤𝑠/𝑤𝑢 in Figure 1 for an increasing stock of robots 

(P) and an increasing stock of AI (G). The skill premium is greatest at the red point, where no AI is used but a large 

stock of industrial robots holds down the wages of low-skill workers. However, AI offers a way to narrow this gap. As 

the blue point suggests, when both AI and the stock of industrial robots are high, the skill premium is still reduced to 

a substantial degree as compared with the previously described case. 
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Figure 1. Skill premium (𝑤𝑠/𝑤𝑢) for various levels of AI (G) and industrial robots (P) 

 
Figure 2 displays the absolute level of the wage rate for low-skill workers and Figure 3 for high-skill workers depending 

on the stocks of traditional automation capital and of AI. We observe that automation capital in the form of industrial 

robots puts downward pressure on the wages of low-skill workers and upward pressure on the wages of high-skill 

workers, whereas the opposite holds true for AI. Overall, the two figures together allow us to arrive at a cautiously 

optimistic outlook in which the growth of both types of capital, industrial robots and AI, can lead to moderate wage 

movements for both skill types alike. 

 

Figure 2. Wages of low-skill workers (𝑤u) for various levels of AI (G) and industrial robots (P) 
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Figure 3. Wages of high-skill workers (𝑤𝑠) for various levels of AI (G) and industrial robots (P) 

 

 

 

 

Conclusion 

We propose a general production function framework that incorporates automation in terms of both industrial robots 

and AI as separate production factors. When simulating the evolution of the skill premium using standard parameter 

values on the substitutability among different types of capital and labor, we find that the increasing use of AI reduces 

the skill premium. Thus, AI has the potential to mitigate or even reverse increases in the skill premium that have been 

observed in the US in the 1980s and 1990s and may be a potential explanation for why the skill premium has not 

increased as fast in the 2000s and 2010s as it did in the preceding two decades. 

 

Overall, however, our contribution has only focused on wage inequality. It may well be that AI raises inequality in 

capital income because the expensive training of AI models implies that widespread ownership is not to be expected. 

This type of inequality needs to be a key focus of policymakers as they seek to understand and guide the future use of 

AI. 
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