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Abstract 

Central bank communication is a critical tool for managing public expectations regarding monetary policy decisions. 

Recent advances in economic research increasingly leverage Natural Language Processing (NLP) to quantify the 

information conveyed through such communication. This policy brief introduces central bank language models (CB-

LMs), specifically tailored for applications in the central banking domain. We show that CB-LMs outperform 

foundational models in predicting masked words within central bank-specific idioms and excel in classifying monetary 

policy stances from FOMC statements, surpassing even state-of-the-art generative Large Language Models (LLMs) in 

the latter task. Furthermore, while the leading generative LLMs show exceptional performance in complex tasks, such 

as analysing long news articles with limited training data, they face notable challenges related to confidentiality, 

transparency, replicability and cost-efficiency. 
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Introduction 

Economic literature increasingly applies natural language processing (NLP) techniques to analyse monetary policy 

communications (Acosta and Meade, 2015; Ehrmann and Talmi, 2020). While these studies offer valuable insights, 

they often rely on language models trained on general text corpora. This limitation may restrict the models' ability to 

fully capture the nuances specific to central banking and monetary economics. Recent research suggests that retraining 

language models on domain-specific datasets can significantly enhance their performance in specialised NLP tasks. 

 

To address the need for domain-specific NLP tools in monetary economics and central banking, we introduce central 

bank language models (CB-LMs), which are trained on a large-scale central banking corpus. Using encoder-based 

models like BERT and RoBERTa, we retrain these models with central bank speeches and policy papers. CB-LMs 

demonstrate superior capabilities in understanding central bank semantics, outperforming foundational models in 

predicting masked words in central bank idioms and classifying monetary policy stance. We also compare CB-LMs with 

state-of-the-art generative Large Language Models (LLMs), which despite their extensive pretraining on diverse 

datasets and minimal retraining requirements, could face challenges in achieving domain-specific precision. 

 

Our goal is to develop domain-specific models that enable more accurate analysis of monetary policy. Additionally, we 

explore the adaptability of different LLMs in central banking and assess their performance across different training 

methods and tasks. Our findings aim to guide central bankers in selecting language models best suited to their specific 

needs. 

 

A two-step approach: domain adaptation and fine-tuning 

The development and application of CB-LMs involves two key phases: domain adaptation and fine-tuning. In the first 

phase, the model is trained using unsupervised learning on an extensive corpus of central banking texts, comprising 

37,037 research papers and 18,345 speeches. This phase enables the model learn linguistic elements such as grammar, 

idioms, semantics, and structural patterns unique to central banking. In the second phase, the model undergoes 

supervised learning on task-specific datasets, a process known as fine-tuning. This step refines the model’s capabilities 

for specialised tasks, such as sentiment classification within the central banking context. We chose foundational 

language models like BERT and RoBERTa due to their widespread acceptance in the NLP community and their 

relatively manageable computational requirements. These models were then customised specifically for the central 

banking domain. 

 

For domain-adaptation, we used Masked Language Modelling (MLM) to enhance the models' bidirectional 

understanding of central banking terminology. This approach involves randomly masking words in sentences and 

retraining BERT and RoBERTa to predict the masked words. Figure 1 illustrates the performance of our six CB-LMs 

compared to the foundational models in predicting masked words within idioms specific to central banking. All CB-

LMs significantly outperform their foundational models, with the top-performing models accurately predicting 90 out 

of 100 masked words. In comparison, RoBERTa and BERT predict only 60 and 53, respectively. These results 

demonstrate the successful adaptation of CB-LMs to the central banking domain. Moreover, we find that performance 

improvements are correlated with the size of the training datasets, with models trained on a combined dataset of 

research papers and speeches achieving the greatest enhancements. 
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Figure 1. Performance of the masked word test 

 

 

Monetary policy sentiment analysis 

Building on the successful domain adaptation phase, we fine-tune CB-LMs to enhance their ability to perform 

specialised tasks, specifically classifying the monetary policy stance of Federal Open Market Committee (FOMC) 

statements as dovish, hawkish or neutral. Excelling in this task could significantly aid central bankers in formulating 

and executing effective monetary policy communication strategies. 

 

For this application, we train CB-LMs using a dataset of 1,243 sentences from historical FOMC statements (1997–

2010), each manually labelled by Gorodnichenko et al. (2023). We randomly allocate 80% of the sentences for training 

and the remaining 20% for testing. To ensure the robustness of our findings, we repeat the evaluation process 30 times, 

measuring the out-of-sample performance based on the percentage of correctly classified sentences. 

 

The results show that RoBERTa-based CB-LMs consistently outperform their foundational counterparts (Figure 2). For 

instance, the top-performing CB-LM, extensively trained on central bank papers and speeches, achieves a mean 

accuracy of 84%, compared to 81% for the foundational RoBERTa model. In contrast, BERT-based CB-LMs do not 

clearly exhibit improved performance. While domain adaptation generally aims to enhance the LLM performance, 

these findings suggest that such adaptations do not guarantee improvements across all scenarios. 

 

Notes: This graph compares the performance of foundation models and our six CB-LMs in the masked 

word test. Y-axis represents the percentage of correct predictions from each model. 
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Figure 2. Classifying monetary policy stance

 

 

 

 

 

 

A comparison with generative LLMs 

We extend our analysis by evaluating state-of-the-art generative LLMs, including ChatGPT, Llama and Mixtral, in the 

context of central bank communication. To this end, we replicate the monetary policy sentiment analysis using these 

generative models, with two key methodological differences. First, we forgo domain adaptation, given these models’ 

extensive pretraining on diverse datasets likely containing central bank-related text. Second, we employ various task-

specific training strategies, including fine-tuning and in-context learning methods. For fine-tuning, we leverage 

supervised fine-tuning (Ziegler et al, 2019), direct preference optimization (Rafailov et al, 2023) and proprietary 

techniques provided by OpenAI. For in-context learning, we apply few-shot learning with examples that are either 

randomly sampled or retrieved as the most similar to the task. 

 

Our findings indicate that fine-tuning significantly enhances generative LLM performance. For example, ChatGPT-3.5 

achieves up to 88% accuracy post fine-tuning, compared to 56% without it. Model size emerges as a critical factor, with 

larger models like Llama-3 70B consistently outperforming smaller versions such as Llama-3 8B. Additionally, 

retrieval-based in-context learning with task-specific few-shot examples further improves performance, boosting 

ChatGPT-4 Turbo’s accuracy to 81%, compared to 73% with random sampling methods. 

 

However, despite these improvements, generative LLMs often underperform encoder-based models like RoBERTa in 

simple classification tasks, underscoring fundamental differences in architecture and training objectives. These results 

suggest that while generative LLMs excel in complex, multi-dimensional tasks, smaller encoder-based models could 

remain more efficient and suitable for straightforward classification applications, particularly given their lower 

computational requirements. 

 

To evaluate the applicability of language models in more challenging scenarios, we examine the performance of CB-

LMs and generative LLMs in analysing monetary policy sentiment in US monetary policy news articles, manually 

classified as hawkish, dovish or neutral. This task requires long-text analysis and relies on limited training data.  

 

Notes: This figure reports the performance of CB-LMs alongside two foundation models in classifying 

the stance of FOMC statements. Sentences from the FOMC statements are manually labelled as Dovish, 

Hawkish or Neutral. The models are fine-tuned with 80% of these sentences and their corresponding 

manual labels. Then, we task the language models with predicting the monetary policy stance for the 

rest 20% of sentences. The prediction from language models is considered as “correct” when it is 

consistent with the expert’s manual label. 
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In this test, generative LLMs, such as ChatGPT-4 and Llama-3 70B achieve higher accuracy (80–81%) without 

additional training, benefiting from extensive pretraining and superior ability to handle complex texts. In contrast, the 

best-performing RoBERTa-based CB-LM achieves an average accuracy of 65% after fine-tuning, only marginally 

surpassing ChatGPT-3.5’s zero-shot predictions. These findings underscore the advantage of leading generative LLMs 

in managing long-range dependencies and navigating contextual variability in extended texts, offering a clear edge 

over CB-LMs for complex application. 

 

Despite these advantages, large generative LLMs present also significant risks. The main challenges for central banks 

in using these models include: (1) concerns about confidentiality and privacy when handling sensitive data, (2) a lack 

of transparency and replicability due to proprietary architectures, (3) high computational and financial costs 

associated with their deployment and fine-tuning, and (4) the risk of variability in outputs, which may undermine 

consistency in critical applications like policy analysis. These challenges necessitate careful evaluation before adopting 

such models for central banking tasks. 

 

Conclusions 

This policy brief describes the introduction of CB-LMs – language models retrained on a large-scale collection of central 

banking texts. By using prominent models like BERT and RoBERTa and adding texts tailored to central banking – 

including speeches, policy notes and research papers – CB-LMs effectively capture domain-specific semantics, 

terminologies and contextual nuances. Our primary goal is to develop and publicly release CB-LMs to advance NLP 

analysis in monetary economics and central banking.1  Additionally, our comprehensive assessment of different LLMs 

across various training settings provides insights into model selection tailored to central bankers' specific tasks and 

technical requirements. 

 

We show that CB-LMs outperform their foundational models in predicting masked words within central bank idioms. 

Some CB-LMs surpass not only their original models but also state-of-the-art generative LLMs in classifying monetary 

policy stances from FOMC statements. CB-LMs excel at processing nuanced expressions of monetary policy, which 

could make them valuable tools for central banks in real-time analysis and decision-making. Nonetheless, in more 

complex scenarios – such as those involved limited data for fine-tuning and processing longer text inputs – the largest 

LLMs, like ChatGPT-4 and Llama-3 70B, exhibit superior performance. However, despite their advantages, deploying 

these LLMs presents significant challenges for central banks, including concerns about confidentiality, transparency, 

replicability and cost-efficiency. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
1 The full documentation of CB-LMs can be downloaded here: https://www.bis.org/publ/work1215.htm. 
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